THE \bar{d} -DISTANCE BETWEEN TWO MARKOV PROCESSES CANNOT ALWAYS BE ATTAINED BY A MARKOV JOINING

BY

MARTIN H. ELLIS

ABSTRACT

For a certain collection of pairs of Markov processes a construction is given which attains the \bar{d} -distance for these pairs; it is then shown this distance cannot be attained by any Markov process on their joint atoms.

Given two processes \mathcal{T}_1 and \mathcal{T}_2 whose partitions are indexed by the same set, the \bar{d} -distance between them, $\bar{d}(\mathcal{T}_1, \mathcal{T}_2)$, is the infimum of the partition distances which can be attained between their partitions when embedding both processes in a third process; in fact the infimum is attained by some process (see Ornstein [2] or [3] for further discussion of \overline{d}). Given two Markov processes whose partitions are indexed by the same set, the "Markov distance" between them, $M(\mathcal{T}_1, \mathcal{T}_2)$, is the infimum of the partition distances which can be attained between their partitions when embedding both processes in a third process which is a Markov process on the join of their embedded partitions; again, the infimum is attained by a Markov process on the joint partition. Clearly $M(\mathcal{T}_1, \mathcal{T}_2) \ge \bar{d}(\mathcal{T}_1, \mathcal{T}_2)$ for $\mathcal{T}_1, \mathcal{T}_2$ Markov processes. It was conjectured that $M(\mathcal{T}_1, \mathcal{T}_2)$ always equalled $\overline{d}(\mathcal{T}_1, \mathcal{T}_2)$. In [1] this was shown to be false as follows: the function M was computed for all pairs of two-state Markov processes, and it was shown that M fails to satisfy the Triangle Inequality, hence is not a metric; since \overline{d} is a metric, this shows that M does not always equal \overline{d} . The computation of M in [1] is involved.

In this paper we give a collection of pairs of two-state Markov processes and a construction which attains the \bar{d} -distance for them, then we calculate the "Markov distance" for them and observe that this distance is greater than the \bar{d} -distance, thus showing that $M \neq \bar{d}$. We conclude the paper by mentioning an

Received November 23, 1975

extension of the construction to a larger class of pairs, and by stating precisely when $M = \vec{d}$ for pairs of two-state Markov processes.

We will denote the symmetric two-state Markov process with transition matrix

$$\begin{pmatrix} 1-\kappa & \kappa \\ \kappa & 1-\kappa \end{pmatrix}$$

by (κ) , where κ is the probability of leaving a state and going to the other state. We always assume $0 < \kappa < 1$. To avoid confusion when considering a pair $((\alpha), (\gamma))$, we denote the first state of (α) by A, the second state of (α) by B and the first state of (γ) by C, the second state of (γ) by D.

The following proposition gives the \bar{d} -distance between two symmetric two-state Markov processes which have the same square.

PROPOSITION 1. For $0 < \alpha < 1/2$, $\bar{d}((\alpha), (1 - \alpha)) = (1 - 2\alpha)/2$.

PROOF. $\overline{d}((\alpha), (1-\alpha)) \ge (1-2\alpha)/2$: $(1-\alpha)$ switches the states of $1-\alpha$ of its measure, whereas (α) switches the states of α of its measure, whence in any joint embedding at least $1-2\alpha$ of the measure switches states for the $(1-\alpha)$ process, but not for the (α) process, and since all points in this set are either going into or coming out of disagreement, the distance attained by the embedding must be $\ge (1-2\alpha)/2$.

 $\overline{d}((\alpha), (1-\alpha)) \leq (1-2\alpha)/2$: It will suffice to show that we can change a generic sequence for (α) into a generic sequence for $(1-\alpha)$ by changing only $(1-2\alpha)/2$ of the letters of the sequence (see Ornstein [2] or [3] for equivalence of this condition to other definitions of \overline{d}). Note that the squares of (α) and $(1-\alpha)$ are both equal to $(2\alpha - 2\alpha^2)$. Hence if we take a generic sequence for (α) and consider only the letters in even places it will be a generic sequence for $(1-\alpha)$ considered only in even places. Thus to change a generic sequence for (α) into one for $(1-\alpha)$ we can limit the changes to letters in the odd places.

The following rule will change a generic sequence $\{y_i\}_{i \in \mathbb{Z}}$ for (α) into a generic sequence for $(1 - \alpha)$: For all $z \in \mathbb{Z}$, independently of whatever other changes are being made, whenever $y_{2z} = y_{2z+1} = y_{2z+2}$, change y_{2z+1} with probability $(1 - 2\alpha)/(1 - 2\alpha + \alpha^2)$; otherwise, leave y_{2z+1} unchanged.

The probability that $y_{2z} = y_{2z+1} = y_{2z+2}$ is $1 - 2\alpha + \alpha^2$, hence this rule changes $1 - 2\alpha$ of the odd places, so $(1 - 2\alpha)/2$ of the y_i are changed. To verify that the resultant sequence is indeed a generic sequence for $(1 - \alpha)$, note that both letters appear in the resultant sequence with the correct probability (1/2) and check that the probability that a letter in the resultant sequence differs from the letter immediately to its left is $1 - \alpha$ irrespective of what letters occur to its left.

Note that the rule given above is a description of a process in which both (α) and $(1-\alpha)$ are embedded which attains the partition distance of $(1-2\alpha)/2$ between their partitions: the eight-state Markov process with transition matrix

1	0	0	α	0	$1-2\alpha$	0	α	0 \
1	0	0	0	α	0	$1-2\alpha$	0	α \
	α	1 – α	0	0	0	0	0	0
	$1 - \alpha$	α	0	0	0	0	0	0
	1	0	0	0	0	0	0	0
	0	1	0	0	0	0	0	0
	α	$1 - \alpha$	0	0	0	0	0	0
1	$1-\alpha$	α	0	0	0	0	0	0 /

and distribution $(1/4, 1/4, \alpha/4, \alpha/4, (1-2\alpha)/4, (1-2\alpha)/4, \alpha/4, \alpha/4)$, with $A = 1 \cup 3 \cup 4 \cup 5$, $B = 2 \cup 6 \cup 7 \cup 8$, $C = 1 \cup 3 \cup 4 \cup 6$, $D = 2 \cup 5 \cup 7 \cup 8$.

States 1 and 2 are the outputs at even times, the other states are the outputs at odd times. One can verify that lumping the states into the two atoms A, B yields (α) and lumping the states into the two atoms C, D yields $(1 - \alpha)$. However lumping the states into the four atoms $A \cap C$, $A \cap D$, $B \cap C$, $B \cap D$ does not yield a Markov process. This last fact could in fact be inferred from the following proposition, which is a particular case of Theorem 3.1 of [1].

PROPOSITION 2. For $0 < \alpha < 1/2$, $M((\alpha), (1 - \alpha)) = (1 - 2\alpha)/(2 - 2\alpha)$.

PROOF. The Markov process with transition matrix

$$\left(\begin{array}{ccccccc}
\alpha & 1-2\alpha & 0 & \alpha \\
1-\alpha & 0 & 0 & \alpha \\
\alpha & 0 & 0 & 1-\alpha \\
\alpha & 0 & 1-2\alpha & \alpha
\end{array}\right)$$

and distribution $(1/(4-4\alpha), (1-2\alpha)/(4-4\alpha), (1-2\alpha)/(4-4\alpha), 1/(4-4\alpha))$ attains this distance with $A \cap C = 1$, $A \cap D = 2$, $B \cap C = 3$, $B \cap D = 4$.

Suppose a smaller distance than $(1 - 2\alpha)/(2 - 2\alpha)$ can be attained by a Markov process on the joint atoms $1 = A \cap C$, $2 = A \cap D$, $3 = B \cap C$, $4 = B \cap D$. Let

$$\begin{pmatrix} e_{11} & \cdots & e_{14} \\ \vdots & - & \vdots \\ e_{41} & \cdots & e_{44} \end{pmatrix}$$

be the transition matrix for this improvement, and let μ be its probability

measure. Note that we can assume $e_{13} + e_{14} = \alpha$: If $e_{13} + e_{14} \neq \alpha$, then $e_{41}\mu(4) + e_{31}\mu(3)$ must equal $\alpha\mu(1)$, for if the measure sent from B to A entered A with a distribution differing from the distribution of A (between atoms 1 and 2) then the part of it immediately returning to B would not be equal to α of its measure (it would be more or less depending on whether the overconcentration was in the atom of A sending more or less than α of its measure to B). Hence if $e_{13} + e_{14} \neq \alpha$, replace the improvement with its inverse to obtain a Markov process on 1, 2, 3, 4 which attains the improved distance and for which $e_{13} + e_{14} = \alpha$.

Since $\mu(2) = \mu(3)$ and $\mu(2) + \mu(3) < (1 - 2\alpha)/(2 - 2\alpha)$ we must have

$$\mu(2) < \frac{1-2\alpha}{4-4\alpha},$$

hence

$$\mu(1) = \frac{1}{2} - \mu(2) > \frac{1}{4 - 4\alpha},$$

SO

$$e_{12} \leq \frac{\mu(2)}{\mu(1)} < 1 - 2\alpha$$

Thus $e_{12} + e_{13} + e_{14} < 1 - 2\alpha + \alpha = 1 - \alpha$, so $e_{11} > \alpha$. But

$$\forall n \in \mathbb{N}, \ \mu(1) e_{11}^n = \mu\left(\bigcap_{k=0}^n T^k(1)\right) \leq \mu\left(\bigcap_{k=0}^n T^k(C)\right) = \frac{1}{2}\alpha^n,$$

whence since $\mu(1) > 0$, $e_{11} \leq \alpha$. Contradiction.

Corollary 3. $M \neq \bar{d}$.

PROOF. For $0 < \alpha < 1/2$, $\bar{d}((\alpha), (1 - \alpha)) = (1 - 2\alpha)/2 < (1 - 2\alpha)/(2 - 2\alpha) = M((\alpha), (1 - \alpha)).$ Q.E.D.

The construction given in Proposition 1 can be extended to pairs of nonsymmetric two-state Markov processes which have the same square (but are not themselves the same): to change a generic sequence for one process into a generic sequence for the other change only letters in odd positions (and make as few changes as necessary). The construction always yields a distance which is less than the "Markov distance" for such pairs. Except for the case covered by Proposition 1, however, the construction does not attain the \overline{d} -distance.

We have recently proved that the \bar{d} -distance between two-state Markov

MARKOV PROCESSES

processes with positive entropy[†] is always less than the "Markov distance" between them unless the "Markov distance" is the partition distance (a paper is in preparation). Thus by Lemmas 2.2 and 2.7 of [1] the pairs of two-state Markov processes with positive entropy for which $\bar{d} = M$ are precisely those given by Propositions 2.3 and 2.5 of [1].

References

1. M. H. Ellis, Distances between two-state Markov processes attainable by Markov joinings, submitted for publication.

2. D. S. Ornstein, An application of ergodic theory to probability theory, Ann. Probability 1 (1973), 43-58.

3. D. S. Ornstein, Ergodic Theory, Randomness, and Dynamical Systems, Yale University Press, New Haven, 1974.

STATE UNIVERSITY OF NEW YORK AT ALBANY 1400 WASHINGTON AVENUE Albany, N.Y. 12222, USA